Abstract
In this report we present a study of the magnetization processes for Co-based amorphous ribbons at low frequencies (10 Hz–13 MHz) as a function of decreasing thicknesses attained by chemical etching. Reversible domain-wall bulging, characterized by initial permeability and relaxation frequency, was monitored by means of inductance measurements. The real part of inductance (proportional to initial permeability) exhibited a decreasing trend with diminishing ribbon thickness, together with an increasing tendency for the relaxation frequency. For high amplitude of the ac field (leading to domain-wall unpinning), reduced ribbon thickness showed a deleterious-enhancement effect on irreversible domain-wall displacement, which was observed for both real and imaginary inductance spectrocopic plots. Results are interpreted in terms of reduced domain-wall pinning distances resulting from thinner alloy samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.