Abstract
This extended abstract presents the results of the first low-frequency experiments conducted on a sandstone sample (Donnybrook, WA) flooded with supercritical CO2 (scCO2). The experiments investigated the effects of scCO2 injection on the elastic and anelastic properties of the rock. The sandstone sample (porosity—11.4%, permeability—0.28 mD) was cut in the direction orthogonal to a formation-bedding plane and tested in a Hoek's triaxial pressure cell equipped with the means for independent control of pore and confining pressures. The pore and confining pressures were set up at 10 and 31 MPa correspondingly. The low-frequency system and the pump comprising of scCO2 were held at a temperature of 42°C. Supercritical CO2 was injected into the sample preliminary saturated with distilled water. The amount of the residual water in the sample after the scCO2 injection was about 40% of pore volume. The elastic parameters obtained for the sample with scCO2 at frequencies from 0.1–100 Hz are very close to those for the dry sample. Some discrepancy in calculated acoustic velocities are caused by the difference in water and scCO2 densities. The measured extensional attenuation is larger when the sample is saturated with scCO2. The applicability of Gassmann's fluid substitution theory for the interpretation of obtained results was also tested during the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.