Abstract

The resonance of thermal lags of solid fuel with heat transfer oscillations in a boundary layer flow is the primary cause of low-frequency instability initiation in hybrid rocket combustion. A detailed study of two cases was conducted experimentally to investigate how the boundary layer is disturbed and leads to low-frequency instability (LFI); combustion with swirl injection and combustion with the frequency jump. The fluctuating boundary layer was successfully captured by visualizing images and proper orthogonal decomposition analysis was performed. The results show that swirl injection with an appropriate intensity substantially reduces the amplitudes of high frequency p’, and no boundary layer perturbation is found in the spectral analysis of mode 2, and Rayleigh index amplifications disappear. While the frequency jump occurs, the coupling status between p’ and q’ became weakly positive and the driving force disturbing the upstream flow was not made. As a result, oscillatory heat transfer was difficult to occur. Therefore, the appearance of boundary layer perturbation is the necessary precondition for the initiation of the low-frequency instability. And the resonance with the thermal lag characteristic leads to the occurrence of LFI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call