Abstract
The excitation of electrostatic, comparatively low frequency, lower-hybrid waves (LHWs) induced by electron beam in semiconductor plasma is examined using a quantum hydrodynamic model. Various quantum effects are taken into account including the recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The effects of different parameters like the electron-to-hole number density ratio, scaled electron beam temperature and streaming speed, propagation angle and cyclotron frequency over the growth, and phase speed of LHWs are investigated. It is noticed that an increase in the electron number density and streaming speed enhance the instability. Similar effects are observed on decreasing the propagation angle with magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.