Abstract

We consider gravitational waves emitted by various populations of compact binaries at cosmological distances. We use population synthesis models to characterize the properties of double neutron stars, double black holes and double white dwarf binaries as well as white dwarf-neutron star, white dwarf-black hole and black hole-neutron star systems. We use the observationally determined cosmic star formation history to reconstruct the redshift distribution of these sources and their merging rate evolution. The gravitational signals emitted by each source during its early-inspiral phase add randomly to produce a stochastic background in the low frequency band with spectral strain amplitude between 10^{-18} Hz^{-1/2} and 5 10^{-17} Hz^{-1/2} at frequencies in the interval [5 10^{-6}-5 10^{-5}] Hz. The overall signal which, at frequencies above 10^{-4}Hz, is largely dominated by double white dwarf systems, might be detectable with LISA in the frequency range [1-10] mHz and acts like a confusion limited noise component which might limit the LISA sensitivity at frequencies above 1 mHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.