Abstract

A fully kinetic ion model is useful for the verification of gyrokinetic turbulence simulations in certain regimes, where the gyrokinetic model may break down due to the lack of small ordering parameters. However, for a fully kinetic model to be of value, it must first be able to accurately simulate low frequency drift-type instabilities typically well within the domain of gyrokinetics. Here, a fully kinetic ion model is formulated with weak gradient drive terms and applied to the toroidal ion-temperature-gradient (ITG) instability for the first time. Implementation in toroidal geometry is discussed, where orthogonal coordinates are used for particle dynamics, but field-line-following coordinates are used for the field equation allowing for high resolution of the field-aligned mode structure. Variational methods are formulated for integrating the equation of motion allowing for accuracy at a modest time-step size. Linear results are reported for both the slab and toroidal ITG instabilities. Good agreement with full Vlasov and gyrokinetic theory is demonstrated in slab geometry. Good agreement with global gyrokinetic simulation is also shown in toroidal geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call