Abstract

Time-resolved electrostatic probe measurements were performed in the near field of a SPT100-ML Hall effect thruster in order to investigate electron properties changes on a microsecond time scale. Such measurements allow one to monitor the electron temperature Te, the electron density ne, as well as the plasma potential Vp during a time period that corresponds to one cycle of a breathing-type plasma oscillation with f≈15–30kHz. Although Te(t) stays constant in time, ne(t) and Vp(t) oscillate with the discharge current waveform frequency. The observed time delay between ne and anode discharge current (Ida) waveforms, which is of approximately 7μs, is linked to the ion transit time from the ionization layer to the probed near-field region. The same time gap is measured between Vp(t) and Ida(t), however Vp(t) and ne(t) are in phase opposition. The electron density reaches its highest value at the very moment ions are ejected out of the thruster discharge chamber, which also corresponds to the instant the cathode potential is the most negative. Such a behavior images the need for ion beam neutralization. Further, it is shown that there is a strong correlation between the electron dynamics and the presence of high frequency (HF) plasma oscillations in the megahertz range: HF fluctuations are the strongest when ne is the highest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call