Abstract

Little has been studied on how the electrochemical noise impacts the limit of detection of field effect transistor (FET) biosensors. Herein, we investigate low frequency noise associated with phosphate-buffered saline (PBS) solutions at varying ionic strengths (Ni) under both weak and strong gate biases corresponding to saturation and sub-threshold regimes, respectively, in AlGaN/GaN heterojunction FET biosensors. We show that the electrochemical noise is strongly dependent on the ionic strength and gate biasing conditions. In the saturation regime (low bias), varying the ionic strength (a range of 10−6× PBS to PBS 1 × stock solutions used for testing) has little to no effect on the characteristic frequency exponent β(β=1), indicating a predominately diffusion-based process. Conversely, under higher biases (sub-threshold regime), the β parameter varies from 1 to 2 with ionic strength exhibiting both diffusion and drift characteristics, with a “cut point” at approximately 10−5× PBS (Ni≈9×1014/mL). Under a high bias, once the PBS concentration reaches 10−3×, the behavior is then drift dominant. This indicates that the higher bias likely triggers electrochemical reactions and by extension, faradaic effects at most physiologically relevant ionic strengths. The signal-to-noise ratio (SNR) of the device has an inverse linear relationship with the low frequency current noise. The device exhibits a higher SNR in the sub-threshold regime than in the saturation regime. Specifically, within the saturation regime, an inversely proportional relationship between the SNR and the ionic concentration is observed. The electrochemical noise induced from ionic activities is roughly proportional to Ni−1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.