Abstract

Terahertz (far infrared) spectroscopy provides a useful tool for probing both ionic motions in solution and the effect of ionic solutes on the dynamics of the solvent. In this study, we calculate terahertz spectra of aqueous alkali chloride solutions using classical but novel (the water model includes three-body interactions, the ion parameterization is non-standard, and the dipole surface is polarizable) molecular dynamics simulations. The calculated spectra compare reasonably well to experimental spectra. Decomposition of the calculated spectra is used to gain a deeper understanding of the physical phenomena underlying the spectra and the connection to, for instance, the vibrational density of states for the ions. The decomposed results are also used to explain many of the cation-dependent trends observed in the experimental spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call