Abstract

We report the numerical and experimental realization of a type of ultrathin planar wall with low-frequency dual-band sound absorption. The proposed planar wall is constructed by a periodic subwavelength unit cell (with a thickness of λ/19) which consists of two different multiple-cavity resonators embedded into a plate structure with a groove. The sound absorption of the wall exists in two working bands (IandII) below 600 Hz which are created by two different mechanisms. In addition to the band I created by a conventional resonance coupling of the two multiple-cavity resonators, it is worth noting that the band II is realized by a mutual resonance coupling between the resonators and groove structure. The fractional bandwidths of the bands I and II can reach about 34.1 and 10.4%, respectively. Furthermore, the application of the proposed ultrathin planar wall in the design of a barrier-free anechoic room with omnidirectional low-frequency dual-band sound absorption is further discussed in detail. The proposed planar wall has the advantages of ultrathin planar structure and omnidirectional low-frequency dual-band sound absorption, which provides diverse routes to design advanced sound-absorption structures in noise control and architectural acoustics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.