Abstract

Glacial deposits are of significant importance to geotechnical engineers and geologists in northern Europe, North America, and Northern Asia, as vast areas of these land surfaces were historically covered with ice leading to the formation of a wide variety of till deposits. The use of these areas for various engineering purposes warrants their subjection to mechanical loads (of static and cyclic forms) from manmade structures, as well as natural hazards such as earthquakes. This paper focuses on the experimental investigation of the cyclic mechanical loading behavior of two glacial tills from northern Germany under one-dimensional loading or oedometric conditions, and in different soil wetting conditions. The experimental results show a significant dependence of the cyclic mechanical response of the glacial tills on wetting condition and number of loading cycles. The recorded values of accumulated plastic strains of the glacial tills generally increase with an increase in wetting or moisture content, with the highest measured value for the two tills being around 3.9% after 19 cycles of loading. The findings of the experimental cyclic mechanical tests of the glacial tills are discussed in view of the intrinsic soil behavior and fabric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call