Abstract

A fuel cell power system that contains a single-phase dc-ac inverter tends to draw an ac ripple current at twice the output frequency. Such a ripple current may shorten fuel cell life span and worsen the fuel efficiency due to the hysteresis effect. The most obvious impact is it tends to reduce the fuel cell output capacity because the fuel cell controller trips under instantaneous over-current condition. In this paper, the ripple current propagation path is analyzed, and its linearized ac model is derived. The equivalent circuit model and ripple current reduction with passive energy storage component are simulated and verified with experiments. An advanced active control technique is then proposed to incorporate a current control loop in the dc-dc converter for ripple reduction. The proposed active ripple reduction method has been verified with computer simulation and hardware experiment with a proton exchange membrane type fuel cell using a multiphase dc/dc converter along with a full-bridge dc-ac inverter. Test results with open loop, single voltage loop, and the proposed active current-loop control are provided for comparison

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call