Abstract

We investigated low-frequency noise in two-dimensional (2D) charge density wave (CDW) systems, 1 T-TaS2 thin films, as they were driven from the nearly commensurate (NC) to incommensurate (IC) CDW phases by voltage and temperature stimuli. This study revealed that noise in 1 T-TaS2 has two pronounced maxima at the bias voltages, which correspond to the onset of CDW sliding and the NC-to-IC phase transition. We observed unusual Lorentzian features and exceptionally strong noise dependence on electric bias and temperature, leading to the conclusion that electronic noise in 2D CDW systems has a unique physical origin different from known fundamental noise types. We argue that noise spectroscopy can serve as a useful tool for understanding electronic transport phenomena in 2D CDW materials characterized by coexistence of different phases and strong pinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call