Abstract

This paper deals with a theoretical analysis of the low-frequency combustion instability induced by the combustion time lag of liquid oxidizer in small-scale hybrid rocket motors. We obtained the determined linear stability limit using the following parameters: the combustion time delay of liquid oxidizer, the residence time of a combustion chamber, injector pressure, chamber pressure, mass flux exponent, O/F, and the polytropic exponent of mixture gas in a combustion chamber. Kitagawa and Yuasa sometimes observed low-frequency oscillations, such as chugging, in their swirling-oxidizer-flow-type hybrid rocket engine. The obtained theoretical stability limit was compared with these experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.