Abstract

Crossing internal wave trains are commonly observed in continental shelf shallow water. In this paper, we study the effects of crossing internal wave structures on three-dimensional acoustic ducts with both theoretical and numerical approaches. We show that, depending on the crossing angle, acoustic energy, which is trapped laterally between internal waves of one train, can be either scattered, cross-ducted or reflected by the internal waves in the crossing train. We describe the governing physics of these effects and illustrate them for selected internal wave scenarios using full-field numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.