Abstract

Low-frequency ac transport properties are investigated theoretically in the zigzag silicene nanosystem with normal-metal electrode/silicene nanoribbon/normal-metal electrode (NSN) structure. Based on the tight-binding approach and ac transport theory, we numerically compute the dc conductance and ac emittance in the nanosystem, by considering the nearest-neighbor hopping, second-nearest-neighbor spin–orbit interaction (SOI) and external electric field. The results show that the anti-resonance effect, caused by the interface scattering between the silicene ribbon and the normal-metal electrodes, is offset by the relatively strong SOI. The SOI induces a quantum phase transition and establishes a topological edge channel in the real space revealed by the local density of states (LDOS), resulting in a constant dc conductance and a vanishing ac emittance around the Dirac point. Further study suggests that the transport property is topologically protected by the SOI from the geometrical size change of the nanosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call