Abstract

Despite common misconceptions, domain walls are too thick to ’’scatter’’ electrons appreciably. However, electrons crossing a wall apply a torque to it, which tends to cant the wall spins. This could be used to measure the conduction electron spin polarization. Most of the low-field resistive anomalies observed in pure Fe, Ni and Co at low temperature are caused by the Lorentz force associated with the internal field B=Ms present inside each domain. The existence of low-resistivity paths extending over many domains accounts for still unexplained magnetoresistance data in iron whiskers. In uniaxial materials, a d.c. eddy-current loop caused by the Hall effect runs around each wall. The field Hz generated by these loops tends to ’’drag’’ the whole domain structure in the direction of the carrier drift velocity. Also, the Joule dissipation of the eddy currents manifests itself as an excess Ohmic resistance. As predicted, this excess resistance decreases as the square of the field, in amorphous Gd25Co75 films, in MnBi films, and in pure bulk cobalt, when the walls are removed by an external field. The excess resistance can also be changed by reorienting the walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.