Abstract
The hopping conductivity of granular metals is known to be of the form sigma varies as exp (-(T0/T)12/) in the temperature range 20K<or=T<280K. A theoretical derivation of this relation using the critical percolation conductance method as developed in the context of the variable range hopping mechanism of conduction in amorphous systems, is discussed. Use is made of the empirical fact that the ratio of intergrain separation and grain size is nearly constant for macroscopically homogeneous samples. It is also assumed that the hopping of electrons is predominantly between nearest neighbours. Extension of the treatment to thin films and comparison with previous theoretical work is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.