Abstract

The physical and magnetic properties of magnetic nanoparticles are crucial for their effectiveness and reliability in biomedical applications. In this article, we report the synthesis of a stable Ho-substituted Mn–Zn ferrite ferrofluid and its physical and magnetic properties. Substitution by rare earth metal plays an important role in determining the magneto-crystalline anisotropy in 4f-3d inter-metallic compounds. Ho 3+ substitution not only enhanced the magnetic anisotropy but also produced strong spin frustration at low temperature. The field dependence of blocking temperature shows H 2/3 dependency in the entire range of field, i.e., 10–700 Oe, indicating the emergence of Ising spins characteristics in the present system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.