Abstract

A new method for measuring and exploiting the magnetic field dependence of chemically induced dynamic nuclear polarization (CIDNP) is described. A solution of an amino acid or protein together with a flavin photosensitizer is irradiated with laser light at a position in the bore of a superconducting NMR magnet where the field is between 0.1 T and 7.0 T. The polarized sample is then transferred by rapid injection into an NMR tube at the centre of the magnet (at 9.4 T), where the spectrum is recorded. The observed 1H CIDNP field dependence of tyrosine agrees well with the diffusion model of the radical pair mechanism. The field dependence of histidine, tryptophan and methionine CIDNP allows the g values of the transient radicals responsible for the polarization to be determined. Experiments in which amino acids compete for the photoexcited flavin indicate that methionine residues could be used as probes of surface accessibility, especially if the polarization is generated in low fields (∼ 0.7 T) and detected in high fields (≥ 9.4 T). Possible extensions of the technique to study protein folding and the structures of partially denatured states of proteins are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call