Abstract

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important human carcinogens. It is metabolized to produce a variety of methyl and 4-(3-pyridyl)-4-oxo-butyl (POB) DNA adducts. A potentially important POB adduct is O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT) because it is the most abundant POB adduct in NNK-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past both O(2)-POB-dT and O(2)-methylthymidine (O(2)-Me-dT) by two model polymerases, E. coli DNA polymerase I (Klenow fragment) with the proofreading exonuclease activity inactivated (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4). We found that the size of the alkyl chain only marginally affected the reactivity and that the specificity of adduct bypass was very low. The k(cat)/K(m) for the Kf catalyzed incorporation opposite and extension past the adducts was reduced ∼10(6)-fold when compared to undamaged DNA. Dpo4 catalyzed the incorporation opposite and extension past the adducts approximately 10(3)-fold more slowly than undamaged DNA. The dNTP specificity was less for Dpo4 than for Kf. In general, dA was the preferred base pair partner for O(2)-Me-dT and dT the preferred base pair partner for O(2)-POB-dT. With enzyme in excess over DNA, the time courses of the reactions showed a biphasic kinetics that indicates the formation inactive binary and ternary complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.