Abstract

NADPH oxidase 2 (NOX2) is a major subtype of NOX and is responsible for the generation of reactive oxygen species (ROS) in brain tissues. MicroRNAs (miRNAs/miRs) are important epigenetic regulators of NOX2. The present study aimed to identify the role of NOX2 miRNA-targets in ischemic stroke (IS). A rat cerebral ischemia/reperfusion (CI/R) injury model and a SH-SY5Y cell hypoxia/reoxygenation (H/R) model were used to simulate IS. Gene expression levels, ROS production and apoptosis in tissue or cells were determined, and bioinformatic analysis was conducted for target prediction of miRNA. In vitro experiments, including function-gain and luciferase activity assays, were also performed to assess the roles of miRNAs. The results indicated that NOX2 was significantly increased in brain tissues subjected to I/R and in SH-SY5Y cells subjected to H/R, while the expression of miR-532-3p (putative target of NOX2) was significantly decreased in brain tissues and plasma. Overexpression of miR-532-3p significantly suppressed NOX2 expression and ROS generation in SH-SY5Y cells subjected to H/R, as well as reduced the relative luciferase activity of cells transfected with a reporter gene plasmid. Collectively, these data indicated that miR-532-3p may be a target of NOX2 and a biomarker for CI/R injury. Thus, the present study may provide a novel target for drug development and IS therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.