Abstract

At long distances interactions between neutral ground state atoms can be described by the Van der Waals potential V(r) =-C6/r^6-C8/r^8 - ... . In the ultra-cold regime atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion p cot d0 (p) = -1/a0 + r0 p^2/2 + ... in terms of the scattering length a0 and the effective range r0. We show that while for these potentials the scattering length cannot be predicted, the effective range is given by the universal low energy theorem r0 = A + B/a0+ C/a0^2 where A,B and C depend on the dispersion coefficients Cn and the reduced di-atom mass. We confront this formula to about a hundred determinations of r0 and a0 and show why the result is dominated by the leading dispersion coefficient C6. Universality and scaling extends much beyond naive dimensional analysis estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call