Abstract

Low-energy theorems for elastic photon scattering (nuclear Compton scattering) from a nucleus of arbitrary spin are derived in the nonrelativistic approximation through terms quadratic in the photon frequency. The same derivation is made for the special case of 0 + → 0 + nuclear excitation by inelastic photon scattering (nuclear Raman scattering). Use is made of the general principle of gauge invariance, which bypasses the need to specify the form of the current operator explicitly. A general discussion of the contribution of mesonic exchanges is made and their effect is isolated. The center-of-mass correction to the nuclear diamagnetic susceptibility is calculated. The 0 + → 0 + two-photon decay amplitude is obtained from the nuclear Raman amplitude and the transition rate is calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.