Abstract

Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardware-redundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for low-energy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique to use standby sparing for hard real-time systems with limited energy budgets. The principal contribution of this paper is an online energy-management technique which is specifically developed for standby-sparing systems that are used in hard real-time applications. This technique operates at runtime and exploits dynamic slacks to reduce the energy consumption while guaranteeing hard deadlines. We compared the low-energy standby-sparing (LESS) system with a low-energy time-redundancy system (from a previous work). The results show that for relaxed time constraints, the LESS system is more reliable and provides about 26% energy saving as compared to the time-redundancy system. For tight deadlines when the time-redundancy system is not sufficiently reliable (for safety-critical application), the LESS system preserves its reliability but with about 49% more energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.