Abstract

The current dilemma of osteosarcoma treatment is the resistance of chemotherapeutic drugs after long-term usage, which also introduces life-threatening side effects. To minimize chemoresistance in osteosarcoma patients, the authors applied shock waves (SWs) to human osteosarcoma MNNG/HOS cells, then evaluated the cell viability and extracellular ATP levels, and further investigated the effect of SWs on cisplatin (DDP) cytotoxicity in MNNG/HOS cells. The authors' results showed that 400 SW pulses at 0.21mJ/mm2 exhibited little influence on the MNNG/HOS cell viability. In addition, this SW condition significantly promoted the extracellular ATP release in MNNG/HOS cells. Importantly, low-energy SWs obviously increased Akt and mammalian target of rapamycin (mTOR) phosphorylation and activation in MNNG/HOS cells, which could be partially reversed in the presence of P2X7 siRNA. The authors also found that low-energy SWs strongly increased the DDP sensitivity of MNNG/HOS cells in the absence of P2X7. For the first time, the authors found that SW therapy reduced the DDP resistance of MNNG/HOS osteosarcoma cells when the ATP receptor P2X7 was downregulated. SW therapy may provide a novel treatment strategy for chemoresistant human osteosarcoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call