Abstract

The low energy properties of the spin-1/2 random Heisenberg chain with ferromagnetic and antiferromagnetic interactions are studied by means of the density matrix renormalization group (DMRG) and real space renormalization group (RSRG) method for finite chains. The results of the two methods are consistent with each other. The deviation of the gap distribution from that of the random singlet phase and the formation of the large-spin state is observed even for relatively small systems. For a small fraction of the ferromagnetic bond, the effect of the crossover to the random singlet phase on the low temperature susceptibility and specific heat is discussed. The crossover concentration of the ferromagnetic bond is estimated from the numerical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.