Abstract

Using a matrix product state algorithm with infinite boundary conditions, we compute high-resolution dynamic spin and quadrupolar structure factors in the thermodynamic limit to explore the low-energy excitations of isotropic bilinear-biquadratic spin-1 chains. Haldane mapped the spin-1 Heisenberg antiferromagnet to a continuum field theory, the non-linear sigma model (NL$\sigma$M). We find that the NL$\sigma$M fails to capture the influence of the biquadratic term and provides only an unsatisfactory description of the Haldane phase physics. But several features in the Haldane phase can be explained by non-interacting multi-magnon states. The physics at the Uimin-Lai-Sutherland point is characterized by multi-soliton continua. Moving into the extended critical phase, we find that these excitation continua contract, which we explain using a field-theoretic description. New excitations emerge at higher energies and, in the vicinity of the purely biquadratic point, they show simple cosine dispersions. Using block fidelities, we identify them as elementary one-particle excitations and relate them to the integrable Temperley-Lieb chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.