Abstract

The healed internal conjugated cleavages at the core of Aykhal octahedral diamond sample AH2 were decorated with {111}dia-facetted ultrapotassic fluid/melt inclusion pockets containing nanosized graphite, phlogopite and olivine (Fo92) inclusions. These olivines are either rounded in pockets with ample fluid, or facetted by the {111}dia mold in the pockets with a fluid film. Transmission electron microscopy revealed two distinct crystallographic characteristics of olivine inclusions: (1) pronounced crystallographic texture of olivines grouped in specific diamond domain, and (2) frequent parallelism or sub-parallelism of specific low-energy faces of the two phases, mainly (010)ol, {120}ol, (001)ol and {111}dia, {110}dia, {100}dia in the order of decreasing preference, forming prominent (010)ol/{111}dia, (010)ol/{110}dia, (001)ol/{110}dia, {120}ol/{111}dia, and {120}ol/{110}dia low-energy phase boundaries with thin liquid film of 1–2 nm in between. These findings not only testify to the extremely low adhesion energies of olivine-diamond boundary pairs, but also imply that, in the presence of a fluid phase, the interfacial energetics and the energetically favored crystallographic orientations of olivine inclusions in diamond can be controlled simply by the settlement/attachment of low-energy facets of olivine crystals precipitating from the parental fluid upon the low-energy {111}dia or {110}dia surfaces of diamond. Such interfacial energetics control and the resultant low-energy boundary pairs are characteristically distinct from the common topotaxy or epitaxy between oxide/silicate mineral pairs, but are in a sense like the Van der Waals heteroepitaxy in artificial systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call