Abstract

Low-energy Landau levels of Bernal zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (B) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are dominated by the B-field strength and the kz-dependent inter-ribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along the kx and kz directions, respectively. The kz-dependent inter-ribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change in state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge-carrier density. The kz-dependent wave functions are further used to predict the selection rule of the optical transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.