Abstract
Engineered geopolymer composite (EGC) is a new kind of fiber reinforced geopolymer composite with tensile strain-hardening behaviors. This paper was intended to investigate the low-energy impact behaviors of EGC. To further reduce the carbon footprint and material cost of EGC, the feasibility of developing ambient cured EGC with cheap local PVA fiber was discussed according to the micromechanics-based analytical models. The compressive, tensile and impact tests of EGC, engineered cementitious composites (ECC), pure geopolymeric matrix and cementitious matrix were conducted and compared. It was found that the EGC specimens have similar tensile behaviors with ECC and the ultimate tensile strain of EGC can be as high as 7.5%. Under impact load, it was found that the PVA fibers could effectively restrict the crushing and spalling of geopolymeric matrix. Also, the dissipated energy of pure geopolymeric matrix is 3.8 times higher than that of cementitious matrix, indicating that it is recommendable to develop impact-resistant material based on geopolymeric matrix. The influences of NaOH molarity on the impact behaviors of EGC and geopolymeric matrix were discussed. It was found that the impact-resistance of EGC improved with the increase of NaOH molarity, while the threshold of NaOH molarity for geopolymeric matrix was recommended as 12 mol/L. Even though the compressive strength of EGC is lower than ECC, it can be concluded that EGC could have comparable or even higher impact-resistance than ECC under different low-velocity impact conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.