Abstract

Helium irradiation of metals has long been studied in efforts to understand the damaging aspects associated with applications in fusion reactors and tritium storage. This work examines the possibility of using low energy helium ion bombardment as a method of producing a beneficial surface texturization to promote bone growth on orthopedic implants. Using 300eV helium ions, two unique porous titanium surfaces were created when substrates were held at temperatures of roughly 450°C and 600°C. The surfaces were physically characterized by scanning electron microscopy (SEM) and scanning white light interferometry. A week long hFOB 1.19 cell culture was performed using an untreated titanium control to evaluate the suitability of these surfaces for orthopedic implants. Cell health and viability were evaluated by calcein AM live cell staining, MTT assay, and SEM. The results show that helium texturizations promote cellular activity and have no detrimental effect on cell health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.