Abstract

In this paper, we present a high resolution angle resolved photoemission spectroscopy (ARPES) study of the electronic properties of graphite. We found that the nature of the low energy excitations in graphite is particularly sensitive to interlayer coupling as well as lattice disorder. As a consequence of the interlayer coupling, we observed for the first time the splitting of the π bands by ≈0.7 eV near the Brillouin zone corner K. At low binding energy, we observed signatures of massless Dirac fermions with linear dispersion (as in the case of graphene), coexisting with quasiparticles characterized by parabolic dispersion and finite effective mass. We also report the first ARPES signatures of electron–phonon interaction in graphite: a kink in the dispersion and a sudden increase in the scattering rate. Moreover, the lattice disorder strongly affects the low energy excitations, giving rise to new localized states near the Fermi level. These results provide new insights on the unusual nature of the electronic and transport properties of graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call