Abstract

We present a detailed study of a continuum random phase approximation approach to quasielastic electron-nucleus and neutrino-nucleus scattering. The formalism is validated by confronting ($e,e'$) cross-section predictions with electron scattering data for the nuclear targets $^{12}$C, $^{16}$O, and $^{40}$Ca, in the kinematic region where quasielastic scattering is expected to dominate. We examine the longitudinal and transverse contributions to $^{12}$C($e,e'$) and compare them with the available data. Further, we study the $^{12}$C($\nu_{\mu},\mu^{-}$) cross sections relevant for accelerator-based neutrino-oscillation experiments. We pay special attention to low-energy excitations which can account for non-negligible contributions in measurements, and require a beyond-Fermi-gas formalism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call