Abstract
Differential cross section measurements for the elastic scattering of electrons from CH3Cl at energies from 0.5 to 9.5 eV are reported for scattering angles of 30° and 100°. The angular scattering dependence is determined at selected energies over this range. At energies below 1.0 eV, the cross sections are in excellent agreement with calculations using the Born dipole approximation. At large angles and higher energies, the scattering is dominated by a 2A1 temporary negative ion state near 3.5 eV. Energy loss data at 3.5, 5.0, and 8.5 eV are reported and the relative contributions of various vibrational modes determined. Differential cross sections for vibrational excitation of the υ3(a1)C–Cl and υ4(e)CH stretching modes have been measured. The latter reveals a broad shape resonance of 2E symmetry peaking near 5.5 eV. Angular distributions for excitation of these same modes are also reported. Using fittings to the vibrational excitation functions, the resonance parameters have been extracted and used in a mixed semiempirical ab initio calculation to compute the relative strengths of the vibrational energy loss peaks. These compare favorably with the results of the experiment. Elastic cross sections integrated over angle are reported for low energies. They are substantially larger than the results from recent measurements of the total cross section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.