Abstract
We report cross sections for low-energy elastic electron collisions with the diazabenzene molecule pyrazine, obtained from first-principles calculations. The integral elastic cross section exhibits three sharp peaks that are nominally shape resonances associated with trapping in the vacant ${\ensuremath{\pi}}^{*}$ molecular orbitals. Although the two lowest-energy resonances do in fact prove to be nearly pure single-channel shape resonances, the third contains a considerable admixture of core-excited character, and accounting for this channel coupling effect is essential to obtaining an accurate resonance energy. Such resonant channel coupling has implications for electron interactions with the DNA bases, especially the pyrimidine bases for which pyrazine is a close analog. In the absence of data on pyrazine itself, we compare our elastic differential cross section to measurements on benzene and find close agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.