Abstract

The design of a high-efficiency mass spectrometer is described, aimed at residual gas detection of low mass species using low-energy electron impact, with particular applications in helium atom microscopy and atomic or molecular scattering. The instrument consists of an extended ionization volume, where electrons emitted from a hot filament are confined using a solenoidal magnetic field to give a high ionization probability. Electron space charge is used to confine and extract the gas ions formed, which are then passed through a magnetic sector mass filter before reaching an ion counter. The design and implementation of each of the major components are described in turn, followed by the overall performance of the detector in terms of mass separation, detection efficiency, time response, and background count rates. The linearity of response with emission current and magnetic field is discussed. The detection efficiency for helium is very high, reaching as much as 0.5%, with a time constant of (198 ± 6) ms and a background signal equivalent to an incoming helium flux of (8.7 ± 0.2) × 106 s-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call