Abstract

We have used low-energy electron-excited nanoluminescence (LEEN) spectroscopy combined with ultrahigh vacuum surface analysis techniques to obtain electronic bandgap, confined state and deep-level trap information from III nitride compound semiconductor surfaces and their buried interfaces on a nanometer scale. Localized states are evident at GaN/InGaN quantum wells, GaN ultrathin films, AlGaN/GaN pseudomorphic heterostructures, and GaN/Al 2O 3 interfaces that are sensitive to the chemical composition, bonding and atomic structure near interfaces, and in turn to the specifics of the epitaxial growth process. Identification of electrically active defects in these multilayer nanostructures provides information to optimize interface growth and control local electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.