Abstract

When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (“option 2” and its improved version, “option 4”). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as “Geant4-DNA-CPA100”.In this study, “Geant4-DNA-CPA100” was used to calculate low-energy electron dose-point kernels (DPKs) between 1keV and 200keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (“option 2” and “option 4”), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with “Geant4-DNA-CPA100” – the first set using Geant4′s default settings, and the second using CPA100′s original code default settings.A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1keV and 10keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA’s existing models were always broader than those generated with “Geant4-DNA-CPA100”. The discrepancies observed between the DPKs generated using Geant4-DNA’s existing models and “Geant4-DNA-CPA100” were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.