Abstract

The chemisorption of hydrogen, oxygen, carbon, carbon monoxide and ethylene was studied by low-energy electron diffraction on ordered stepped surfaces of platinum which were cut at angles less than 10° from the (111) face. The chemisorption characteristics of stepped platinum surfaces are markedly different from those of low index platinum surfaces and they are also different from each other. Hydrogen and oxygen which do not chemisorb easily on the (111) and (100) crystal faces chemisorb readily and at relatively low temperatures and pressures on the stepped platinum surfaces used in this study. In contrast to the ordered adsorption of carbon monoxide and ethylene on low index faces, the adsorption was disordered on the stepped surfaces and there is evidence for dissociation of the molecule. Carbon formed several ordered surface structures and caused faceting on the stepped surface, which are not observed on low index platinum surfaces. There appears to be a much stronger interaction of chemisorbed gases with stepped surfaces than with low index planes that must be caused by the differing atomic structures at the steps. Evidence for the differing reactivities of the two stepped surfaces are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.