Abstract

SUMMARYMany kinds of insulating materials are used outside a spacecraft. They include FEP films, polyimide films, and so on, and are used as thermal control materials. These materials are exposed to a charged‐particle environment around the spacecraft. Thus then become charged due to charged particles, especially electrons. It has been pointed out that charging of these materials is likely to cause discharges on the surfaces. From this viewpoint, we investigated the charging potential characteristics of 127‐μm‐thick FEP film, a typical thermal control material, by exposing it to electron irradiation at various energies below 20 keV. In the dependence of the charging potential on the electron energy, we found that the electron energy at which no charge‐up occurs is about 2.7 keV. This appears to be the energy at the which secondary electron emission yield becomes unity. This indicates that electron irradiation of FEP film with energies lower than 2.7 keV induces positive charging. From the charge decay characteristics after electron irradiation, the volume resistivity of the film was also obtained as a function of the electric fields in the bulk of the FEP film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.