Abstract

Trapping of atoms and molecules in electrostatic, magnetic and optical traps has enabled studying atomic and molecular interactions on a timescale of many seconds, allowing observations of ultra-cold collisions and reactions. Here we report the first magnetic deceleration and trapping of neutral carbon atoms in a static magnetic trap. When co-trapping the carbon atoms with oxygen molecules in a superconducting trap, the carbon signal decays in a non-exponential manner, consistent with the decay model describing losses resulting from atom-molecule collisions. Our findings pave the way to studying both elastic and inelastic collisions of species that cannot be laser cooled, and specifically may facilitate the observation of reactions at low temperatures, such as C + O2 → CO + O, which is important in interstellar chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.