Abstract

Although primary percutaneous coronary intervention (PCI) substantially reduces the mortality of patients with acute myocardial infarction (AMI), left ventricular (LV) remodeling after AMI still remains an important issue in cardiovascular medicine. We have previously demonstrated that low-energy cardiac shockwave (SW) therapy ameliorates LV remodeling after AMI in pigs. In this first-in-human study, we examined the feasibility and the effects of the SW therapy on LV remodeling after AMI in humans. Seventeen patients with AMI who successfully underwent primary PCI (peak-creatine kinase<4000 U/l) were treated with the SW therapy. Low-energy shock waves were applied to the ischemic border zone around the infarcted area at 2, 4, and 6 days since AMI. Next, we compared these patients with historical AMI controls by propensity score matching (N=25). There were no procedure-related complications or adverse effects. At 6 and 12 months after AMI, LV function as assessed by MRI showed no signs of deleterious LV remodeling. When we compared the SW-treated group with the historical AMI controls at 6 months after AMI, LV ejection fraction was significantly higher in the SW-treated group (N=7) than in the historical control group (N=25) by echocardiography (66±7 vs. 58±12%, P<0.05). LV end-diastolic dimension also tended to be smaller in the SW than in the control group (47.5±4.6 vs. 50.0±5.9 mm, P=0.29). These results suggest that low-energy extracorporeal cardiac SW therapy is feasible and may ameliorate postmyocardial infarction LV remodeling in patients with AMI as an adjunctive therapy to primary PCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call