Abstract

The high-Tc alkali doped iron selenide superconductors KxFe{2-y}Se2 have been recently shown to be intrinsically phase separated into Fe vacancy ordered block antiferromagnetic regions and superconducting regions at low temperatures. In this work, we use a microscopic five orbital Hubbard model to obtain the electronic low-energy states near the interfaces between block antiferromagnets and superconductors. It is found that abundant low-energy in-gap bound states exist near such interfaces irrespective of whether the superconductor has d- or s-wave pairing symmetry. By contrast, it is shown how nonmagnetic scattering planes can provide a natural means to distinguish between these two leading pairing instabilities of the KxFe{2-y}Se2 materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.