Abstract

Background corrected secondary neutral energy spectra derived from Cu powder pellets with H 3BO 3, MgO, Al 2O 3, TiO 2, Y 2O 3 and ZrO 2, show energy distributions being more or less typical for collision cascades in the cases of the metal ions M +, of O + at energies >5 eV above the ion generation potential, and of the molecules Cu 2 +, AlO +, TiO +, YO + and ZrO +, whereas the larger parts of the energy distributions of BO +and BO 2 +exhibit a similar shape as the Ar +plasma gas ions. From this, and from the background of the low decomposition and melting temperatures of H 3BO 3 and B 2O 3, respectively, we conclude that the detected BO and BO 2 molecules have been emitted with thermal energies in processes implying lower energies than collision cascades. Evidence was found that the same holds for HBO 2 and H 2BO 2. In order to obtain relative correction factors for MO + molecular ion intensities, electron impact ionization cross sections have been calculated for the light MO molecules using the binary-encounter Bethe (BEB) formula, and for the respective metal M atoms by means of the semiempirical Lotz formula. For the heavy MO molecules YO and ZrO, cross sections have been estimated using the Thomson formula. The comparison of corrected relative MO/M and M/Cu intensities yields evidence that thermal (H)BO x emission amounts to the same order of magnitude as B emission from collision cascades, and that this situation is comparable to the high yield of MO molecules emitted in collision cascades from oxides with high M masses. Since the normal energy window of an HF-plasma secondary neutral mass spectrometer does not accept particles with originally thermal energies, it is concluded that these findings are relevant for quantification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call