Abstract
We consider the 3D Pauli operator with nonconstant magnetic field \mathbf B of constant direction, perturbed by a symmetric matrix-valued electric potential V whose coefficients decay fast enough at infinity. We investigate the low-energy asymptotics of the corresponding spectral shift function. As a corollary, for generic negative V , we obtain a generalized Levinson formula, relating the low-energy asymptotics of the eigenvalue counting function and of the scattering phase of the perturbed operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Research Institute for Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.