Abstract

Autothermal reforming is an important pathway to hydrogen via fossil fuel decarbonization. Traditionally, the finishing step of hydrogen production via autothermal reforming consists of decarbonation via conventional aqueous-amine absorption which incurs a huge energy penalty due to high heat-ratio and low-pressure carbon dioxide stripping entailing costly compression for geological storage. This work proposes and assesses an alternative high-pressure temperature-swing hydrogen decarbonation that promotes stripping at high-pressure reducing carbon dioxide compression costs. Such new hydrogen decarbonation uses 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ionic-liquid physical-absorption due to its solute affinity, low vapor-pressure, high thermal stability and low heat consumption for carbon dioxide stripping at high-temperature and high-pressure. Technical and economic aspects of the ionic-liquid temperature-swing decarbonation are evaluated and compared with the conventional aqueous-amine decarbonation. Results showed that high-pressure ionic-liquid stripping requires 5.5 times less heat to produce a high-pressure carbon dioxide stream and reduces 4.3 times its compression power. These results directly impact net power exportation of the combined-cycle hydrogen-fired power plant; i.e., the ionic-liquid gas-to-wire exports 35.6% more electricity than the aqueous-amine counterpart. Economically, the ionic-liquid gas-to-wire has 36% higher revenues, entailing a net value 2.5 times higher (US$ 390.2*106) and 5 years lower payback-time than the conventional aqueous-amine counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.