Abstract

To introduce and validate a pulse scheme that uses low duty cycle trains of π-pulses to achieve saturation that is relatively insensitive to exchange rate yet linearly dependent on labile proton concentration. Simulations were performed to explore the exchange rate sensitivity of π-pulse trains and continuous wave chemical exchange saturation transfer (CEST) signals. Creatine phantoms with varying pH and varying concentrations were imaged to demonstrate pH insensitivity and concentration dependence of low duty cycle π-pulse saturation. Simulations show decreasing the duty cycle of π-pulse saturation decreases peak sensitivity to exchange rate, and this range of insensitivity can be tuned to different exchange rates through average B1 power. The range of insensitivity is unaffected by changes in relaxation and magnetization transfer, while the sensitivity of CEST signal maintains linear dependence on labile proton concentration. Under B1,avg = 0.48 μT, 30mM creatine with pHs ranging between 6.36 and 8.21 exhibited CEST contrast ranging between ~6 and 11% under continuous wave and ~4% across all pHs using 10% duty cycle π-pulses. Imaging these phantoms using duty cycles of 5, 10, 25, and 50% showed decreasing pH sensitivity with decreased duty cycle. Creatine phantoms with varied concentrations and pHs reveal that π-pulse train saturation exhibited stricter correlation to concentration at lower DCs. Low DC π-pulse train is an easy-to-implement way of providing labile proton concentration-dependent CEST MRI signal that is insensitive to exchange rate. This approach can be useful in studies where a change of chemical exchange rate may interfere with accurate assessments of physiology or pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call