Abstract

Research is being conducted world-wide related to chemoprevention of future lung cancer among smokers. The fact that low doses and dose rates of some sparsely ionizing forms of radiation (e.g., x rays, gamma rays, and beta radiation) stimulate transient natural chemical and biological protection against cancer in high-risk individuals is little known. The cancer preventative properties relate to radiation adaptive response (radiation hormesis) and involve stimulated protective biological signaling (a mild stress response). The biological processes associated with the protective signaling are now better understood and include: increased availability of efficient DNA double-strand break repair (p53-related and in competition with normal apoptosis), stimulated auxiliary apoptosis of aberrant cells (presumed p53-independent), and stimulated protective immune functions. This system of low-dose radiation activated natural protection (ANP) requires an individual-specific threshold level of mild stress and when invoked can efficiently prevent the occurrence of cancers as well as other genomic-instability-associated diseases. In this paper, low, essentially harmless doses of gamma rays spread over an extended period are shown via use of a biological-based, hormetic relative risk (HRR) model to be highly efficient in preventing lung cancer induction by alpha radiation from inhaled plutonium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.