Abstract

The microtubule-stabilizing drug paclitaxel has activity in relapsed ovarian cancer. dl922-947, an oncolytic adenovirus with a 24-bp deletion in E1A CR2, replicates selectively within and lyses cells with a dysregulated Rb pathway and has efficacy in ovarian cancer. In the aggressive A2780CP xenograft, combination treatment with weekly dl922-947 and paclitaxel has significantly greater efficacy than either treatment alone and can produce complete tumor eradication in some animals. We investigated the mechanisms of paclitaxel's synergy with dl922-947 in ovarian cancer. The host-cell microtubule network is grossly rearranged and stabilized following adenovirus infection, but paclitaxel does not increase this significantly. Paclitaxel does not synergize by increasing infectivity, viral protein expression or virus release. However, destabilizing the microtubule network with nocodazole reduces viral exit, revealing a novel microtubule-dependent pathway for non-lytic adenoviral exit. dl922-947 can override multiple cell cycle checkpoints but induces cell death by a non-apoptotic mechanism. In combination, dl922-947 and low-dose paclitaxel induces aberrant, multipolar mitoses, mitotic slippage and multinucleation, triggering an apoptotic cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.